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SUMMARY 

A new approach to  the calculation of the high pressures characterizing the flow field in front of a piston 
undergoing severe acceleration over the short term is presented. In contrast with previous approaches where 
the computational domain is altered but which stop short of transforming velocities, here the problem is 
solved in an accelerating non-Euclidean co-ordinate system where the piston is stationary. The method is 
applied to a study of the problem of premature sabot separation. Through use of Harten's second-order- 
accurate TVD scheme, flow simulations are performed for both 1D and 3D axisymmetric geometries. The 
simple 1D model gives pressure profiles surprisingly close to those of the more physical 3D model. 
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1. INTRODUCTION 

The problem of numerically calculating the flow in front of a non-uniformly accelerating piston 
has been studied by Moretti.' However, should it be desired to apply the method to axisymmetric 
flows, shock fitting is not well-suited and cases can arise where flow particulars differ from those 
previously assumed. A more recent treatment of the compressing piston problem occurs in 
Reference 2, where other approaches which use shock-capturing methods are given. However, 
it is not at all clear how to extend these methods to higher-dimensional flows and non-blunt 
projectiles. 

Furthermore, one drawback encountered is that there arises from operator splitting the 
requirement to solve a convection equation 

u, - cu, = 0, (1) 

where C is the speed of the piston. Although equation (1) has the exact solution 

u = f ( x  + Ct), (2)  

delicacy is required when the initial profile is represented graphically. As the shock produced 
by the accelerating piston grows in strength, with finite difference methods overshoots eventually 
occur, which can be avoided by resort to TVD or E N 0  schemes. 

In order to avoid solving the convection equation (1) in the presence of a strong shock, a new 
approach is sought. By transforming both velocities and computational domain, the full potential 
of the transformation technique can be achieved. This leads to solving a fluid flow problem 
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formulated in a non-Euclidean space. Of all approaches considered,’.’ this method promises the 
easier generalization to higher-dimensional problems. For the problem of premature sabot 
separation, 1D results equivalent to those of Reference 2 are obtained. Results from the I D  
model turn out surprisingly close to those obtained when 3D axisymmetric flow is simulated. 

2. GOVERNING EQUATIONS 

The conservation law form for the Euler equations which govern the one-dimensional, ideal 
compressible flow of a fluid is 

U ,  + F( U ) ,  = 0, (3) 
where =[;;I 
and 

F =  r P + P u ’  1 . 
(4) 

The unknowns are pressure P,  density p ,  velocity u, specific internal energy e and specific total 
energy E = e + u2/2. The independent variables are time t and streamwise distance x. For 
compressible flow of an ideal gas the equation of state P = (y - 1)pe applies. 

3. TRANSFORMATION TO NON-EUCLIDEAN GEOMETRY 

In Reference 2 the motion of the accelerating piston is arrested by a co-ordinate transformation 
which changes equation (1) to the form 

(6) 

where up = b(t) is the velocity of the accelerating piston. The computational domain has been 
altered, yet the physical fluid velocities are unchanged. Thus the motion of the piston progressing 
into the fluid is accounted for by a backward convection of the entire flow into the now stationary 
piston. To avoid the convection term appearing in equation (6), the further transformation 

u,+ F(U), - upux = 0, 

- 
u = u - u u ,  (7) 

on the fluid velocities leads, after separation and recombination, to the fluid equations in a 
moving, non-Euclidean co-ordinate system. Actually, what is done to separate equations (3H5) 
into primitive variable form, invoke (7) and recombine in the usual fashion to produce the 
conservation law form 

0, + F( O), + G = 0. (8) 
Here 
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where up is the acceleration of the piston. The specific total energy in the non-Euclidean system 
is given by 

E = e + O.5f i2 ,  (10) 

whereas e, P and p are invariant. 

Operator splitting 

flow field update over time increment 6t proceeds according to the relation 
Yanenko's method3 of operator splitting is used to numerically solve equations (8H10). A 

The operator TA takes into account the effects of the acceleration of the co-ordinate system 
represented by the term G. The operator TH represents discarding the acceleration term G and 
updating the counterpart of equation (3) using Harten's second-order-accurate TVD scheme? 
Since it is intended to compare results with the second method of Reference 2, where a first-order 
splitting is used, the above first-order splitting is employed. 

Actually, for the case of an initial stagnation flow the flux derivative term in equation (8) 
vanishes and the resulting equations are exactly solved by holding p and e constant and updating 
the velocity over a short time interval 6t according to equation (7) with up replaced by an 
appropriate velocity increment a,& = 6u. Thus in the splitting the effects of acceleration can 
be exactly calculated. 

4. BOUNDARY CONDITION TREATMENT 

One approach to handling the wall boundary condition at  the moving piston is that of Widhopf 
et u Z . , ~  who use a wave treatment of the near-wall physics to estimate the pressure at the piston. 
When the flow is compressive, a shock wave is fitted between the wall state and the state at the 
nearest grid point. Otherwise an expansion wave is fitted between these two fluid states. 
Alternatively, the wall pressure can be estimated by linear extrapolation employing pressures at 
the two nearest grid locations: 

P ,  = PI - 2 P , .  (12) 

In Reference 2 these methods are found to be essentially equivalent. Thus the wave treatment 
will be used exclusively. 

5. NUMERICAL RESULTS FOR A GIVEN ACCELERATION HISTORY 

Jacketed projectiles undergoing in-bore acceleration to high velocities may experience premature 
separation of the sabot6 In this section we conduct a study of the high pressures characterizing 
the flow field in front of a projectile undergoing short-term, severe acceleration in the high 
supersonic range. Assuming zero blow-by of the propellant gas, perhaps the simplest tractable 
model for the high pressure build-up is that of one-dimensional flow in front of an accelerating 
piston. The piston is driven according to a measured velocity history experienced by a saboted 
projectile which is known to encounter premature in-bore separation. 

However, in order to get some idea of the applicability of the 1D model, in the sequel 
axisymmetric flow models and non-blunt projectiles will also be considered. As it turns out, 
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comparison of results appears to indicate that the small difference in accuracy is probably not 
worth the extra effort: the 1D model is sufficient for estimating the pressure build-up. 

Figure 1 shows a typical velocity history for the firing of a saboted projectile during the time 
that 24 ft of in-bore motion occurs.6 In-bore initial conditions before firing are atmospheric 
pressure and a temperature of 540 OR. Numerical results for this problem are now presented. 

Figures 2-4 show the Mach number, pressure and velocity profiles in front of the piston at 
the time that approximately 24ft in-bore have been traversed. Figure 5 shows the pressure 
build-up as a function of the distance traversed by the piston. To obtain the input piston velocity 
profile, a piecewise-quadratic fit to graphical velocity data is used. Since no trouble was taken 
to use a quadratic spline, time-wise discontinuities in acceleration lead to small but noticeable 
slope discontinuities in pressure. Figure 6 shows a comparison of results between the present 
method and the second method of Reference 2, where only the computational domain is 
transformed. There is clearly negligible difference in results for the two methods. 

One minimal check of the validity of the present algorithm is to determine whether the flow 
in front of a piston moving at uniform velocity is reproduced. An affirmative result (not shown 
here) has been obtained computationally. Moreover, the results of Figures 2-6 are essentially 
unaffected by mesh refinement. 

TIME (MSEC) 
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Figure 1. Projectile input velocity 
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Figure 2. Exit Mach number profile 
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Figure 3. Exit pressure profile 
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Figure 4. Exit velocity profile 
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Figure 5. Piston pressure build-up versus distance travelled 
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6. THE 3D AXISYMMETRIC CASE 

In this section the partial time transformation approach of Reference 2 is employed for 
a more realistic study of the internal ballistics problem previously considered. Results are 
presented for numerical simulations of the 3D, axisymmetric flow inside a 150mm cannon, 
driven by an accelerating projectile. The previous piston velocity history is again used. However, 
the Godunov method of Reference 2 has been replaced with Harten's second-order TVD scheme, 
which is well-documented in Reference 4. A grid increment of 20 points per calibre, which is 
equivalent to that of the 1D calculation, is used. 

Figures 7 and 8 show the bore-sight piston pressure build-up for the cases of blunt 
and non-blunt projectiles respectively. Here the non-planar piston consists of a 45", 75 mm 
bevelled (staircase profile) appendage welded to the front of a 150mm blunt projectile. 
Maximum bore-sight piston pressure comparison for the 1D and 3D problems gives respectively 
878 : 850: 841 psia, where the bevelled projectile slightly lowers the bore-sight pressure at the 
piston by flow push-off. 
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Figure 7. Axisymmetric bore-sight pressure build-up for a blunt projectile 
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Figure 8. Axisymmetric bore-sight pressure build-up for a non-blunt projectile 
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Figure 9. Global pressure 

7. CONCLUSIONS 

The transformation to non-Euclidean space coupled with operator splitting, Harten’s second- 
order-accurate TVD scheme and the appropriate wall boundary condition appears to give good 
results for the supersonic sabot separation problem. At least, close agreement in results between 
the scheme introduced here and that of Reference 2 is realized. Most satisfying is the close 
agreement between results from the iD  and 3D axisymmetric flow models, which implies that 
for estimating the pressure build-up the extra cost of accounting for realistic in-bore flow and 
non-blunt projectiles is not really essential. 
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